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Abstract: In this paper, a dual-hop cognitive amplify-and-forward (AF) relay network subject to independent non-
identically distributed (i.n.i.d.) η − µ fading channels is investigated. In the considered network, secondary users
(SUs) including one secondary user source (SU-S) and one secondary user relay (SU-R) are allowed to share the
same spectral resources with the primary user (PU) simultaneously under the premise that the quality of service
(QoS) of PU can be guaranteed. In order to guarantee the QoS of PU, the maximum interference power limit is
considered to constraint the transmit powers at SU-S and SU-R. For integer-valued fading parameters, a closed-
form lower bound for the outage probability (OP) of the considered networks is obtained, whereas the lower bound
in integral form for the OP is derived for arbitrary-valued fading parameters. For the special case of the generalized
η−µ fading channels, such as Nakagami-m fading channels, the analytical results become the previous published
results. In order to obtain further insights on the OP performance, asymptotic expressions for the OP at high
SNRs are derived. From the asymptotic results, we also reveal that the diversity gain of the secondary network is
only determined by the fading parameters of the secondary network, whereas the primary network only affects the
coding gain. Finally, simulation confirms the correctness of our analysis.

Key–Words: Outage probability (OP), amplify-and-forward (AF), cognitive relaying networks (CRN), η−µ fading,
spectrum sharing.

1 Introduction
Over the past few years, cognitive radio with spectrum
sharing has attracted considerable interest. In under-
lay cognitive networks, the secondary users (SUs) can
simultaneously access the licensed spectrum of the
primary user (PU) without causing harmful interfer-
ence on PU. Thus, in order to ensure PU’s quality of
service (QoS), the power constraint of the interference
on the primary network must be considered. Recent-
ly, to further improve the spectrum efficiency, incor-
porating cooperative relaying into cognitive networks
has gained extensive attention owing to its high spec-
trum utilization [1–7]. With the maximum interfer-
ence power limits, the exact outage probability (OP)
of an underlay cognitive network with amplify-and-
forward (AF) relaying has been investigated in [1]. In
the presence of the primary users interference, the ex-
act expression for OP of a dual-hop cognitive decode-
and-forward (DF) relay network has been obtained

in [2]. Bao et al. proposed cognitive multihop DF
networks and analyzed the system performance with
the interference limits in [3]. With maximum trans-
mit power limits, the outage performance of cogni-
tive network using AF relaying in [4] and DF relay-
ing in [5] has been analyzed. Most recently, incorpo-
rating multiuser diversity and multiple-input multiple-
output (MIMO) technologies into cognitive network-
s, the outage analysis has been investigated in [7].
While in these works, the channel models are normal-
ly assumed as Rayleigh fading distribution [1–3, 7] or
Nakagami-m fading distribution [4–6].

For small-scale fading, many well-known chan-
nels, e.g., Rayleigh, Hoyt, Nakagami-m channel, have
been widely used to characterize the fading chan-
nel. However, in some practical cases, there are no
distributions that can match experimental data very
well. Due to this, Yacoub [8] proposed the so-called
η−µ distribution to better model small-scale fading in
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non-line-of-sight (NLOS) conditions than those well-
known distributions. In addition, the η− µ fading is a
general fading including Rayleigh, Hoyt, Nakagami-
m fading as special cases [9]. In recent years, the η−µ
fading model has been paid much attention [11, 12].
In [11], the authors analyzed the error performance by
using moment generating function (MGF) over η − µ
fading channels, without investigating outage perfor-
mance. Later, Peppas et al. analyzed the conventional
dual-hop relaying network over mixed η−µ and κ−µ
fading channels in [12].

Despite the wide applicability of the η − µ distri-
bution, to the best knowledge of the authors, the per-
formance of cognitive AF relay networks in η−µ fad-
ing environment is still unexplored in the open tech-
nical literature. Motivated by this lack, we investi-
gate the outage probability for the dual-hop cognitive
AF relay networks over i.n.i.d. η − µ fading chan-
nels. The tight lower bound and the asymptotic ex-
pressions for outage probability (OP) have been both
obtained. From the asymptotic results, the diversity
gain and coding gain are achieved indicating that the
diversity gain is only determined by the fading param-
eters of the secondary network, whereas the primary
network only affects the coding gain. For the special
case of the generalized η − µ fading channels, such
as Nakagami-m fading channels, the analytical results
become the previous published results in [4]. In order
to guarantee the QoS of PU, the maximum interfer-
ence power limit is considered in this paper. Finally,
simulation is presented to verify the correctness of our
analysis.

2 Network and Channel Model
Consider a dual-hop cognitive AF relay network in-
cluding one SU source (SU-S), one AF SU relay (SU-
R), one SU destination (SU-D), and one PU destina-
tion (PU-D). All nodes are equipped with single an-
tenna and operate in half-duplex mode. The commu-
nication from SU-S to SU-D is performed into two
times slots. During the first time slot, SU-S trans-
mits signal x to SU-R with transmit power PS , then
the received signal at SU-R can be written as yr =
g1
√
PSx + nr, where g1 is the channel coefficien-

t of the link SU-S → SU-R and nr is additive white
Gaussian noise (AWGN) at SU-R. Whereas during
the second time slot, the received signal yr is ampli-
fied with gain factor G and then forwarded to SU-D
with transmit power PR, the received signal at SU-D
is yd = Gg1g2

√
PSPRx + Gg2

√
PRnr + nd, where

g2 is the channel coefficient of the link SU-R→ SU-D
and nd is AWGN at SU-D. In order to ensure the inter-
ference on PU below the maximum tolerable interfer-
ence powerQ, the transmit powers at SU-S and SU-R
are governed by PS = Q/|h1|2 and PR = Q/|h2|2,
where h1 and h2 are the channel coefficients of the
interference link SU-S → PU-D and SU-R → PU-
D, respectively. We assume that all AWGN compo-
nents have zero mean and variance N0. By setting
1/G2 = |g1|2PS +N0, the end-to-end instantaneous
SNR at SU-D can be obtained as [4]

γd =
γ1γ2

γ1 + γ2 + 1
, (1)

where

γ1 = γQ
|g1|2

|h1|2
, γ2 = γQ

|g2|2

|h2|2
, (2)

with γQ = Q/N0. Throughout this analysis, it is as-
sumed that all links are subject to i.n.i.d. η−µ fading.
Thus, |g`|2 and |h`|2 follow the η−µ distribution with
parameters µg` , ηg` and µh` , ηh` , respectively, where
` ∈ {1, 2}. Let E{|g1|2} = Ω1, E{|g2|2} = Ω2,
E{|h1|2} = Ω3 and E{|h2|2} = Ω4.

Therefore, the probability density function (PDF)
of X , where X ∈ {|g1|2, |g2|2, |h1|2, |h2|2} can be
expressed as [8]

fX(x) =
2
√
πµµ+0.5hµxµ−0.5

Γ(µ)Hµ−0.5X
µ+0.5 exp

(
− 2µhx

X

)
× Iµ−0.5

(2µHx

X

)
, (3)

where Γ(·) denotes the Gamma function [15] and
Iν(·) the ν-th order modified Bessel function [15, e-
q.(8.431)]. Also, X = E(X), µ > 0 is related to the
fading severity, µ ∈ {µg` , µh`} and η ∈ {ηg` , ηh`}.
The parameters h and H are given by [8] h = (2 +
η−1 + η)/4, H = (η−1− η)/4 with 0 < η <∞, with
h ∈ {hg` , hh`} and H ∈ {Hg` , Hh`}.

Assuming integer values of µ, the cumulative dis-
tribution function (CDF) of X can be obtained as fol-
lows [12],

FX(x) = 1− 1

Γ(µ)

( h
H

)µ{ µ−1∑
k=0

µ−k−1∑
p=0

1

p!

[
Apxpa(k)

×exp(−Ax) + (−1)µBpxpb(k) exp(−Bx)
]}
, (4)
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where

a(k) =
(−1)k(µ+ k − 1)!H−k

2µ+kk!(h−H)µ−k
,

b(k) =
(µ+ k − 1)!H−k

2µ+kk!(h+H)µ−k
,

A =
2µ(h−H)

X
, B =

2µ(h+H)

X
,

and a(k) ∈
{
a
(k)
g` , a

(k)
h`

}
, b(k) ∈

{
b
(k)
g` , b

(k)
h`

}
, A ∈

{Ag` , Ah`}, B ∈ {Bg` , Bh`}.
For arbitrary values of µ, the CDF of X can be

expressed as

FX (x) = 1− Yµ

(
H

h
,

√
2hµx

X

)
(5)

where

Yµ(x, y) =

√
π21.5−µ(1− x2)µ

Γ(µ)xµ−0.5

×
∫ ∞
y

e−t
2
t2µIµ−0.5(t

2x)dt (6)

denotes the Yacoub integral [8, eq. (20)]. It is noted
that Yµ(x, y) can be expressed in terms of tabulated
functions for integer or half-integer values of µ only.
For arbitrary values of µ, an expression of Yµ(x, y) in
terms of the bivariate confluent hypergeometric func-
tions is available in [10, eq. (2)].

The MGF of X can be deduced in closed form
as [14, eq. (3)]

M(s) = [(1 + s/A)(1 + s/B)]−µ. (7)

Finally, by employing an infinite series repre-
sentation for the modified Bessel function, [15, e-
q. (8.447)] as well as the definition of the in-
complete gamma function [15, eq. (8.350.2)], the
incomplete MGF of X , defined as M(x, s) ,∫∞
t exp(−sx)fX(x)dx, can be deduced as

M(x, s) =
2
√
πhµ

Γ(µ)

∞∑
k=0

× H2k(µ/X)2µ+2kΓ(2µ+ 2k, 2µh t /X) + s t

k!Γ(µ+ k + 1/2)
(
2µh t /X + s

)2µ+2k
.

(8)

3 Outage Performance Analysis

In this section, the OP of cognitive AF relaying system
over i.n.i.d. η − µ fading will be analyzed. The OP,
i.e., Pout(γth), is defined as the probability that the
instantaneous SNR at SU-D is below a specified SNR
threshold γth, i.e., Pout(γth) = Pr{γd 6 γth}.

3.1 Lower Bound Analysis for OP
It can be observed that γd in (1) is upper bounded by
γd 6 min{γ1, γ2}, yielding

Pout(γth) > Pr{min(γ1, γ2) 6 γth}
= 1− (1− Fγ1(γth)) (1− Fγ2(γth))

= Fγ1(γth) + Fγ2(γth)− Fγ1(γth)Fγ2(γth). (9)

In order to obtain the lower bound expression for
OP, the CDFs of γ1 and γ2, Fγ1(γ) and Fγ2(γ) should
be firstly studied, respectively. Then, Fγ`(γ) is given
by

Fγ`(γ) = Pr{γ` 6 γ} = Pr
{
|g`|2 6

γ

γQ
|h`|2

}
=

∫ ∞
0

f|h`|2(x)

∫ γ
γQ

x

0
f|g`|2(y)dxdy

=

∫ ∞
0

f|h`|2(x)F|g`|2
( γ

γQ
x
)
dx. (10)

Since |h`|2 and |g`|2 follow the η−µ distribution,
∀` = {1, 2}, and for integer values of µg` and µh` ,
using [15, eq. (8.467)], the modified Bessel function
Iµ−0.5(z) in (4), with µ > 0 being an integer, is ex-
pressed in closed form as

Iµ−0.5(z) =
1√
π

µ−1∑
k=0

(µ− 1 + k)!

k!(µ− 1− k)!

×
[

(−1)k exp(z)− (−1)µ−1 exp(−z)
(2z)k+0.5

]
. (11)

Then, by utilizing (3) and (4), f|h`|2(·) and F|g`|2(·)
can be easily obtained. By substituting these results
into (10) and with the help of [15, Eq. (3.351.3)], the
CDF of γ1 can be obtained as (12) given on the top of
next page, where

∑̃
k,p,q

=
1

Γ(µg1)Γ(µh1)

(
hg1
Hg1

)µg1( hh1
Hh1

)µh1µg1−1∑
k=0

µg1−k−1∑
p=0

×
µh1−1∑
q=0

(µh1 + q − 1)!(µh1 + p− q − 1)!

p!q!(µh1 − q − 1)!(4Hh1)q

(
µh1
Ω3

)µh1−q
.
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Fγ1(γ) =1−
∑̃
k,p,q

(
γ

γQ

)p{
a(k)g1 A

p
g1

[
(−1)q

(
Ag1

γ

γQ
+Ah1

)−(µh1+p−q)
+ (−1)µh1

(
Ag1

γ

γQ
+Bh1

)−(µh1+p−q)]

+ (−1)µg1 b(k)g1 B
p
g1

[
(−1)q

(
Bg1

γ

γQ
+Ah1

)−(µh1+p−q)
+ (−1)µh1

(
Bg1

γ

γQ
+Bh1

)−(µh1+p−q) ]}
. (12)

It can be observed that the CDF of γ2 is similar to
the CDF of γ1, so Fγ2(γ) can be directly derived from
(12) by substituting the respective parameters by their
counterparts (i.e., µg1 → µg2 , µh1 → µh2 , hg1 →
hg2 , hh1 → hh2 , Hg1 → Hg2 , Hh1 → Hh2 , a(k1)g1 →
a
(k1)
g2 , a(k2)h1

→ a
(k2)
h2

, b(k1)g1 → b
(k1)
g2 , b(k2)h1

→ b
(k2)
h2

,

a
(k)
g1 → a

(k)
g2 , b(k)g1 → b

(k)
g2 , Ag1 → Ag2 , Ah1 → Ah2 ,

Bg1 → Bg2 , Bh1 → Bh2 and Ω3 → Ω4).
Finally, for integer values of µg` and µh` , ∀` =

{1, 2}, substituting (12) and the CDF of γ2 into (9),
the lower bound expression for OP can be obtained is
given as (13) given on the top of next page, where

∑̂
k,p,q

=
1

Γ(µg2)Γ(µh2)

(
hg2
Hg2

)µg2( hh2
Hh2

)µh2µg2−1∑
k=0

µg2−k−1∑
p=0

×
µh2−1∑
q=0

(µh2 + q − 1)!(µh2 + p− q − 1)!

p!q!(µh2 − q − 1)!(4Hh2)q

(
µh2
Ω4

)µh2−q
.

Specially, for Nakagami-m fading channels, i.e.,
µg` = mg` , µh` = mh` and ηg` = ηh` = η → 0 [8],
where mgl and mhl denote Nakagami fading parame-
ters, hence, h−H → 1/2, h+H →∞ and h/H → 1,
A → m/X and B → ∞. The lower bound expres-
sion for OP in (13) becomes

Pout(γth)≥1−

mg1−1∑
k=0

α
mh1
3 Γ(mh1 + k)

(
α1γth
γQ

)k
k!Γ(mh1)

(
α3 + α1γth

γQ

)mh1+k


×

mg2−1∑
k=0

α
mh2
4 Γ(mh4 + k)

(
α2γth
γQ

)k
k!Γ(mh2)

(
α4 + α2γth

γQ

)mh2+k
 , (14)

where α1 = mg1/Ω1, α2 = mg2/Ω2, α3 = mh1/Ω3

and α4 = mh2/Ω4 which is identical with [4, e-
q. (23)].

Analyzing the most general case of η − µ fading
channels, i.e., the case with not-necessarily-integer
values for the µ parameter of the η−µ distribution, for

arbitrary values of the µ fading parameters, the com-
putation of (10) is very difficult, mostly because of the
fact that the CDF of the η-µ fading channel is avail-
able in integral form only. Consequently, the evalua-
tion of (10) requires a two-fold numerical integration.
Instead, it is more convenient to express in the Fourier
transform domain, by employing the Parseval’s theo-
rem.

By employing the Parseval’s theorem [16], the
product integral in (10) can be written as

Fγ`(γ) =
1

2π

∫ ∞
−∞
F
{
f|h`|2(x);x;ω

}
×F

{
F|g`|2

( γ

γQ
x
)

;x;ω

}
dω. (15)

whereF{·} denotes Fourier transform and (·) denotes
complex conjugate. To this end, the Fourier trans-
formsF{fX(x);x;ω} andF{FY (Tx) ;x;ω} should
be deduced. The first Fourier transform, can be readi-
ly obtained as

F
{
f|h`|2(x);x;ω

}
=M|h`|2(−ıω), (16)

where M|h`|2(s) is the moment generating function
(MGF) of |h`|2 and ı =

√
−1.

By employing the following Fourier transforms
[16]:

F
{∫ x

−∞
g(τ)dτ ;x;ω

}
= − ı

ω
F{g(x);x;ω}

+ F{g(x);x; 0}πδ(ω),

(17a)

F {g(Tx);x;ω} =
1

|T |
F
{
g(x);x;

ω

T

}
, (17b)

where T = γ
γQ

, one obtains:

F
{
F|g`|2 (Tx) ;x;ω

}
= − ı

ω
M|g`|2

(
−ı ω
T

)
+ πδ(ω). (18)
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Pout(γth)≥1−

{∑̃
k,p,q

(
γth
γQ

)p
a(k)g1 A

p
g1

[
(−1)q

(
Ag1

γth
γQ

+Ah1

)−(µh1+p−q)
+(−1)µh1

(
Ag1

γth
γQ

+Bh1

)−(µh1+p−q)]

+ (−1)µg1 b(k)g1 B
p
g1

[
(−1)q

(
Bg1

γth
γQ

+Ah1

)−(µh1+p−q)
+ (−1)µh1

(
Bg1

γth
γQ

+Bh1

)−(µh1+p−q) ]}

×

{∑̂
k,p,q

(
γth
γQ

)p
a(k)g2 A

p
g2

[
(−1)q

(
Ag2

γth
γQ

+Ah2

)−(µh2+p−q)
+ (−1)µh2

(
Ag2

γth
γQ

+Bh2

)−(µh2+p−q) ]

+ (−1)µg2 b(k)g2 B
p
g2

[
(−1)q

(
Bg2

γth
γQ

+Ah2

)−(µh2+p−q)
+ (−1)µh2

(
Bg2

γth
γQ

+Bh2

)−(µh2+m−q) ]}
. (13)

For arbitrary values of µg` and µh` , ∀` = {1, 2},
using [14, eq.(3)] as well as the identity

(1 + ıa)−µ = (1 + a2)−µ/2 exp[ıµ arctan(a)] (19)

with a being real, a lower bound for OP can be de-
duced as

Pout(γth) ≥
2∑
`=1

I(µg` , µh` , ηg` , ηh` , γth, γQ)

−
2∏
`=1

I(µg` , µh` , ηg` , ηh` , γth, γQ), (20)

where I(µg` , µh` , ηg` , ηh` , γth, γQ) is expressed as in
(21) on the top of the next page. Note that the in-
tegral in (20) can be easily evaluated numerically by
employing Gaussian quadrature techniques or by em-
ploying standard built-in functions for numerical in-
tegration, available in popular mathematical software
packages such as Matlab, Maple or Mathematica.

3.2 Asymptotic Analysis for OP
In order to obtain further insights on the system per-
formance, the asymptotic expression for OP at high
SNRs will be derived in this section, wherefrom the
diversity and coding gains can be deduced.

Using the lower bound Pout(γ) =
Pr{min(γ1, γ2) 6 γ}, Pout(γ) can be ap-
proximated at high SNRs as Pout(γ) =
Fγ1(γ)+Fγ2(γ)−Fγ1(γ)Fγ2(γ) ' Fγ1(γ)+Fγ2(γ).
From [12, eqs. (14),(15)], for x→ 0+, the asymptotic
approximation for fX(x) can be expressed as [12]

fX(x) ' hµ

Γ(2µ)

(
2µ

X

)2µ

x2µ−1, (22)

where µ ∈ {µg` , µh`} and h ∈ {hg` , hh`}. Employing
(22), one can finally obtain the asymptotic approxima-
tion for FX(x) as

FX(x) ' hµ

2µΓ(2µ)

(
2µ

X

)2µ

x2µ. (23)

Utilizing (3) and (23) to obtain f|h1|2(·) and F|g1|2(·),
respectively, then substituting them into (10) and with
the help of [17, eq. (2.15.3.2)], the asymptotic approx-
imation for Fγ1(γ) can be deduced as

Fγ1(γ)
γQ→∞

=

√
πΓ(2µg1 + 2µh1)

µg1Γ(2µg1)Γ(µh1)Γ(µh1 + 0.5)

× h
µg1
g1

(4hh1)µh1

(
Ω3µg1

Ω1µh1hh1

)2µg1
(
γ

γQ

)2µg1

× 2F1

(
µg1 + µh1 , µg1 + µh1 + 0.5;µh1 + 0.5;

H2
h1

h2h1

)
.

(24)

Similarly, the asymptotic expression for Fγ2(γ) can
be directly derived from (24) after replacing the pa-
rameters by their counterparts. Finally, for arbitrary
values of µg` and µh` , ∀` = {1, 2}, when γQ → ∞,
utilizing these results, the asymptotic approximation
for OP can be expressed as

Pout(γth)
γQ→∞

= Fγ1(γth) + Fγ2(γth)

= Θ ·
(
γth
γQ

)min(2µg1 ,2µg2 )

, (25)

where

Θ =


Θ1, if µg1 < µg2
Θ1 + Θ2, if µg1 = µg2
Θ2, if µg1 > µg2

(26)
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I(µg` , µh` , ηg` , ηh` , γth, γQ) =

1

2
+

1

π

∫ ∞
0

sin
[
µh` arctan

(
ω
Ah`

)
+ µh` arctan

(
ω
Bh`

)
− µg` arctan

(
ω
Ag`

γQ
γth

)
− µg` arctan

(
ω
Bg`

γQ
γth

)]
ω

(
1 + ω2

A2
h`

)µh`/2(
1 + ω2

B2
h`

)µh`/2 (
1 + ω2

A2
g`

γ2Q
γ2th

)µg`/2 (
1 + ω2

B2
g`

γ2Q
γ2th

)µg`/2 dω.

(21)

and Θ1,Θ2 are given as

Θ1 =

√
πΓ(2µg1 + 2µh1)

µg1Γ(2µg1)Γ(µh1)Γ(µh1 + 0.5)

× h
µg1
g1

(4hh1)µh1

(
Ω3µg1

Ω1µh1hh1

)2µg1

× 2F1

(
µg1 + µh1 , µg1 + µh1 + 0.5;µh1 + 0.5;

H2
h1

h2h1

)
,

Θ2 =

√
πΓ(2µg2 + 2µh2)

µg2Γ(2µg2)Γ(µh2)Γ(µh2 + 0.5)

× h
µg2
g2

(4hh2)µh2

(
Ω4µg2

Ω2µh2hh2

)2µg2

× 2F1

(
µg2 + µh2 , µg2 + µh2 + 0.5;µh2 + 0.5;

H2
h2

h2h2

)
,

where 2F1(·) is the Gauss hypergeometric function
[15].

Based on the asymptotic expression for OP in
(25), the diversity gainGd and the coding gainGc can
be expressed as

Gd = min(2µg1 , 2µg2),

Gc = γth
−1Θ−1/min(2µg1 ,2µg2 ),

respectively. As it can be observed from the above
formulae, the diversity gain only depends on the more
severe fading channel between two hops of the sec-
ondary network, whereas the primary network only
affects its coding gain.

4 Numerical and Computer Simula-
tion Results

In this section, in order to evaluate the outage per-
formance of cognitive AF relay networks over η − µ
fading, some representative numerical results are now
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Fig. 1: OP of cognitive AF relay network over η −
µ fading channels with parameters η = 0.7, µg1 =
2, µh1 = µh2 = 5.

presented by using common mathematical softwares
such as Matlab or Mathematica. To validate the accu-
racy of our analytical expressions, we utilize Monte-
Carlo computer simulation to demonstrate the afore-
mentioned expressions. For the simulations in Figs. 1
and 2, without loss of generality, we assume that
the average channel powers of all links are given by
Ωi = γQ, i = {1, 2, 3, 4}. The outage threshold γth is
set to 3 dB for all considered analysis. In all figures,
the lower bound results are quite tight and the asymp-
totic results also converge the simulations in high SNR
region. This validates the usefulness of our derived
analytical and asymptotic expressions.

In Fig. 1, the OP of cognitive AF relay networks
over η−µ fading channels is plotted for different µg2 ,
ηg1 and ηg2 with η = 0.7, µg1 = 2 and µh1 = µh2 =
5. Fig. 1 shows the OP for various values of µg2 be-
tween 1 and 3, namely µg2 = {1, 1.4, 1.7, 3}, and
ηg1 = ηg2 = {0.1, 0.7}. As observed from Fig. 1, the
outage performance improves as µg2 increases and/or
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Fig. 2: OP of cognitive AF relay network over η −
µ fading channels with parameters η = 0.7, µg1 =
2, µg2 = 3.

ηg1 , ηg2 increase. It can be also seen that, there is a sig-
nificant increase in diversity gain when µg2 increases
from 1 to 3, however the same diversity gain can be
achieved when µg2 = 3. This is because the diversity
gain equals to min(2µg1 , 2µg2).

Fig. 2 depicts how the parameters µh1 , µh2 and
ηh1 , ηh2 affect the OP performance of the secondary
network, respectively. And the OP curves for dif-
ferent µh1 , µh2 and ηh1 , ηh2 with η = 0.7, µg1 =
2 and µg2 = 3 are plotted. It can be observed that
the OP performance improves when µh1 and µh2 in-
crease from µh1 = µh2 = 1 to µh1 = µh2 = 5 and/or
ηh1 , ηh2 increase. Moreover, as expected, the fading
parameters of interference links only affect the cod-
ing gain, without affecting the diversity gain, just as
our preceding analysis.

To evaluate the effect of position of PU on SUs’
network, Fig. 3 shows the OP of cognitive AF re-
lay network for different PU’s position with η =
0.7, µg1 = 2, µg2 = 3 and µh1 = µh2 = 1. As-
sume all SUs are located in a straight line, and SU-
S, SU-R and SU-D are located at co-ordinates (0,0),
(1/2,0) and (1,0), respectively, and PU-D has three
co-ordinates (0.44,0.44), (0.55,0.55) and (0.66,0.66).
The average channel power ΩX can be expressed as
Ωi = γQ/d

4
i [4], i = {1, 2, 3, 4}, where di denotes

the distance between the transceivers. From Fig. 3, it
can be seen that the position of PU-D significantly af-
fects the OP performance of the secondary network,
and when PU-D is located at co-ordinate (0.66,0.66),
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Fig. 3: OP of cognitive AF relay network over η −
µ fading channels with parameters η = 0.7, µg1 =
2, µg2 = 3, µh1 = µh2 = 1.

the best performance can be achieved.

5 Conclusion
In this paper, the tight lower bound as well as the
asymptotic expressions of OP for cognitive AF re-
lay network over i.n.i.d. η − µ fading channels have
been obtained under the maximum interference pow-
er constraint. Based on the newly derived formulae,
several important performance metrics can be exhib-
ited to quantify the impact of primary networks on
the secondary performance. Our findings reveal that
the diversity gain only depends on the more severe
fading hop between two hops of the secondary net-
work, whereas the primary network only affects the
coding gain. Monte-Carlo computer simulation has
confirmed the correctness of our analysis.
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